Sains Malaysiana 53(1)(2024): 49-61
http://doi.org/10.17576/jsm-2024-5301-05
MPTP- Induced BALB/C Mice Recapitulate Compensatory Parkinson’s-Like
Motor Features
(MPTP- Mencit Aruhan BALB/C Merupakapitulasikan Pampasan Ciri Motor Seperti Parkinson)
MUSA MUSTAPHA1,2,
CHE NORMA MAT TAIB1,*, SHARIDA FAKURAZI1 & MOHAMAD ARIS MOHD MOKLAS1
1Department of Human Anatomy,
Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
2Department of Human Anatomy, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
Received:
2 June 2023/Accepted: 2 January 2024
Abstract
This study aimed to assess motor responses and associated
pathological changes caused by MPTP neurotoxicity in Balb/c
mice. Male mice (13 weeks old, 25-30 g) were divided into four groups and
received intraperitoneal injections of normal saline or different doses of
MPTP-HCl for five consecutive days. Body weight was
monitored, and behavioral tests were conducted. Histological examination with
H&E staining was performed on the striatum and substantia nigra. Contrary to expectations, MPTP-treated mice showed
increased locomotor activity in the open field test, covering a greater
distance and exhibiting more rearing compared to control mice (p<0.05). The
catalepsy test also showed lower catalepsy scores in the MPTP-treated group
(p<0.05). However, the pole test did not indicate the presence of
MPTP-induced bradykinesia (p>0.05). Similarly, the traction and hang tests
showed no significant effects of MPTP on motor balance or muscle strength
(p>0.05). Among the MPTP-treated groups, the 30 mg/kg MPTP-HCl group displayed the most severe pathological changes,
including reactive gliosis, as observed in histological examination. In
conclusion, the subacute MPTP mouse model used in this study did not exhibit
noticeable motor deficits or significant weight loss in Balb/c
mice, possibly due to subthreshold dopamine depletion compensatory mechanisms.
This model could provide valuable insights into the compensatory mechanisms
involved in Parkinson's disease.
Keywords: Balb/c mice; MPTP; Parkinson's-like symptoms
Abstrak
Penyelidikan ini bertujuan untuk menilai respons motor dan perubahan patologi yang berkaitan disebabkan oleh neurotoksin MPTP pada model tikus Balb/c untuk penyakit Parkinson. Mencit jantan Balb/c berumur 13 minggu dan berat antara 25-30 g telah dibahagikan secara rawak kepada empat kumpulan. Mereka menerima suntikan intraperitoneal dengan larutan garam fisiologi 0.9% atau dos berbeza MPTP-HCl selama lima hari berturut-turut. Berat badan tikus dipantau dan ujian tingkah laku dilakukan. Setelah itu, pemeriksaan histologi menggunakan pewarnaan H&E dilakukan pada striatum dan substantia nigra. Berbeza dengan jangkaan, mencit yang diberikan MPTP menunjukkan aktiviti lokomotor yang meningkat dalam ujian lapangan terbuka, menempuh jarak yang lebih jauh dan menunjukkan lebih banyak gerakan memanjat berbanding dengan mencit kawalan (p<0.05). Ujian katalepsi juga menunjukkan skor katalepsi yang lebih rendah pada kumpulan yang diberikan MPTP (p<0.05). Walau bagaimanapun, ujian tiang tidak menunjukkan kehadiran bradikinesia yang disebabkan oleh MPTP (p>0.05). Begitu juga, ujian daya tarikan dan gantungan tidak menunjukkan kesan yang signifikan MPTP terhadap keseimbangan motor atau kekuatan otot mencit (p>0.05). Antara kumpulan yang diberikan MPTP, kumpulan MPTP-HCl dengan dos 30
mg/kg menunjukkan perubahan patologi yang paling teruk, termasuk hipokromasia dan gliosis yang teruk, seperti yang dilihat dalam pemeriksaan histologi. Secara kesimpulannya, model mencit MPTP subakut yang digunakan dalam kajian ini tidak menunjukkan ketidakupayaan motor yang ketara atau kehilangan berat badan yang signifikan pada mencit Balb/c. Ini mungkin disebabkan oleh mekanisme pampasan yang mengatasi penurunan dopamin melalui pemulihan dan mekanisme kelebihan.
Model ini dapat memberikan pandangan yang berharga mengenai mekanisme pampasan yang terlibat dalam penyakit Parkinson.
Kata kunci: Gejala seperti Parkinson; Mencit Balb/c; MPTP
REFERENCES
Ali,
S.J. & Rajini, P.S. 2016. Effect of monocrotophos, an organophosphorus insecticide, on the
striatal dopaminergic system in a mouse model of Parkinson’s disease. Toxicology
and Industrial Health 32(7): 1153-1165. doi.org/10.1177/0748233714547733
Bhaduri,
B., Abhilash, P.L. & Alladi, P.A. 2018. Baseline striatal and nigral
interneuronal protein levels in two distinct mice strains differ in accordance
with their MPTP susceptibility. Journal of Chemical Neuroanatomy 91:
46-54. doi.org/10.1016/j.jchemneu.2018.04.005
Blesa,
J. & Przedborski, S. 2014. Parkinson’s disease: Animal models and
dopaminergic cell vulnerability. Frontiers in Neuroanatomy 8: 155. doi.org/10.3389/fnana.2014.00155
Blesa,
J., Trigo-Damas, I., Dileone, M., Del Rey, N.L., Hernandez, L.F. & Obeso, J.A.
2017. Compensatory mechanisms in Parkinson's disease: Circuits adaptations and
role in disease modification. Experimental Neurology 298: 148-161. doi.org/10.1016/j.expneurol.2017.10.002
Brooks,
S.P. 2011. Neurological evaluation of movement disorders in mice. In Animal
Models of Movement Disorders, Neuromethods, vol. 61, edited by Lane, E.
& Dunnett, S. New Jersey: Humana Press. pp. 65-86.
doi.org/10.1007/978-1-61779-298-4_5
Campolo, M., Casili, G.,
Biundo, F., Crupi, R., Cordaro, M., Cuzzocrea, S. & Esposito, E. 2017. The
neuroprotective effect of dimethyl fumarate in an MPTP-mouse model of
Parkinson's disease: Involvement of reactive oxygen species/nuclear
factor-κB/nuclear transcription factor related to NF-E2. Antioxidants
and Redox Signaling 27(8): 453-471. doi.org/10.1089/ars.2016.6800
Chen,
L., Ding, Y., Cagniard, B., Van Laar, A.D., Mortimer, A., Chi, W., Hastings,
T.G., Kang, U.J. & Zhuang, X. 2008. Unregulated cytosolic dopamine causes
neurodegeneration associated with oxidative stress in mice. Journal of
Neuroscience 28(2): 425-433. doi.org/10.1523/JNEUROSCI.3602-07.2008
Garza-Ulloa,
J. 2019. Update on Parkinson’s disease. American Journal of Biomedical
Science and Research 2(6): 229-236. doi.org/10.34297/AJBSR.2019.02.000614
Gibrat,
C., Saint‐Pierre, M., Bousquet, M., Lévesque, D., Rouillard, C. &
Cicchetti, F. 2009 Differences between subacute and chronic MPTP mice models:
Investigation of dopaminergic neuronal degeneration and α‐synuclein
inclusions. Journal of Neurochemistry 109(5): 1469-1482. doi.org/10.1111/j.1471-4159.2009.06072.x
Hall,
C.S. 1934. Emotional behavior in the rat. I. Defecation and urination as
measures of individual differences in emotionality. Journal of Comparative
Psychology 18(3): 385-403. doi.org/10.1037/h0071444
Huang,
J. & Jiang, Q. 2019. Dexmedetomidine protects against neurological
dysfunction in a mouse intracerebral hemorrhage model by inhibiting
mitochondrial dysfunction-derived oxidative stress. Journal of Stroke and
Cerebrovascular Diseases 28(5): 1281-1289. doi.org/10.1016/j.jstrokecerebrovasdis.2019.01.016
Hu, M.,
Li, F. & Wang, W. 2018. Vitexin protects dopaminergic neurons in
MPTP-induced Parkinson’s disease through PI3K/Akt signaling pathway. Drug
Design, Development and Therapy 12: 565-573. doi.org/10.2147/DDDT.S156920
Hu, D., Cui, Y. & Zhang,
J. 2021. Nervonic acid amends motor disorder in a mouse model of Parkinson’s
disease. Translational Neuroscience 12(1): 237-246. doi.org/10.1515/tnsci-2020-0171
Jackson-Lewis,
V. & Przedborski, S. 2007. Protocol for the MPTP mouse model of Parkinson's
disease. Nature Protocols 2(1): 141-151. doi.org/10.1038/nprot.2006.342
Jo,
M.G., Ikram, M., Jo, M.H., Yoo, L., Chung, K.C., Nah, S.Y., Hwang, H., Rhim, H.
& Kim, M.O. 2019. Gintonin mitigates MPTP-induced loss of nigrostriatal
dopaminergic neurons and accumulation of α-synuclein via the Nrf2/HO-1
pathway. Molecular Neurobiology 56(1): 39-55. doi.org/10.1007/s12035-018-1020-1
Kistner,
A., Lhommée, E. & Krack, P. 2014. Mechanisms of body weight fluctuations in
Parkinson’s disease. Frontiers in Neurology 5: 84. doi.org/10.3389/fneur.2014.00084
Kozina,
E.A., Khaindrava, V.G., Kudrin, V.S., Kucheryanu, V.G., Klodt, P.D., Bocharov,
E.V., Raevskii, K.S., Kryzhanovskii, G.N. & Ugryumov, M.V. 2011.
Experimental modeling of functional deficiency of the nigrostriatal
dopaminergic system in mice. Neuroscience and Behavioral Physiology 41(7): 671-679. doi.org/10.1007/s11055-011-9471-0
Liu,
Q., Zhu, D., Jiang, P., Tang, X., Lang, Q., Yu, Q., Zhang, S., Che, Y. &
Feng, X. 2019. Resveratrol synergizes with low doses of L-DOPA to improve
MPTP-induced Parkinson disease in mice. Behavioural Brain Research 367:
10-18. doi.org/10.1016/j.bbr.2019.03.043
Luchtman,
D.W., Shao, D.I. & Song, C. 2009. Behavior, neurotransmitters and
inflammation in three regimens of the MPTP mouse model of Parkinson's disease. Physiology
and Behavior 98(1-2): 130-138. doi.org/10.1016/j.physbeh.2009.04.021
Mann,
A. & Chesselet, M.F. 2015. Techniques for motor assessment in rodents. In Movement
Disorders: Genetics and Models. 2nd ed., edited by LeDoux, M.S.
Massachusetts: Academic Press. pp. 139-157.
doi.org/10.1016/B978-0-12-405195-9.00008-1
Mustapha,
M. & Mat Taib, C.N. 2021. MPTP-induced mouse model of Parkinson’s disease:
A promising direction for therapeutic strategies. Bosnian Journal of Basic
Medical Sciences 21(4): 422-433. doi.org/10.17305/bjbms.2020.5181
Nagarajan,
S., Chellappan, D.R., Chinnaswamy, P. & Thulasingam, S. 2015. Ferulic acid
pretreatment mitigates MPTP-induced motor impairment and histopathological
alterations in C57BL/6 mice. Pharmaceutical Biology 53(11): 1591-1601. doi.org/10.3109/13880209.2014.993041
Obergasteiger,
J., Frapporti, G., Pramstaller, P.P., Hicks, A.A. & Volta, M. 2018. A new
hypothesis for Parkinson’s disease pathogenesis: GTPase-p38 MAPK signaling and
autophagy as convergence points of etiology and genomics. Molecular
Neurodegeneration 13(1): 40. doi.org/10.1186/s13024-018-0273-5
Ogawa,
N., Hirose, Y., Ohara, S., Ono, T. & Watanabe, Y. 1985. A simple
quantitative bradykinesia test in MPTP-treated mice. Research Communications
in Chemical Pathology and Pharmacology 50(3): 435-441.
Oliván,
S., Calvo, A.C., Gasco, S., Muñoz, M.J., Zaragoza, P. & Osta, R. 2015.
Time-point dependent activation of autophagy and the UPS in SOD1G93A mice
skeletal muscle. PLoS ONE 10(8): e0134830. doi.org/10.1371/journal.pone.0134830
Paxinos,
G. & Franklin, K.B. 2019. Paxinos and Franklin's the Mouse Brain in
Stereotaxic Coordinates. 5th ed. Massachusetts: Academic Press.
Rai,
S.N. & Singh, P. 2020. Advancement in the modelling and therapeutics of
Parkinson’s disease. Journal of Chemical Neuroanatomy 104: 101752. doi.org/10.1016/j.jchemneu.2020.101752
Sanberg,
P.R., Bunsey, M.D., Giordano, M. & Norman, A.B. 1988. The catalepsy test:
its ups and downs. Behavioral Neuroscience 102(5): 748-759. doi.org/10.1037/0735-7044.102.5.748
Shi,
X., Bai, H., Wang, J., Wang, J., Huang, L., He, M., Zheng, X., Duan, Z., Chen,
D., Zhang, J., Chen, X. & Wang, J. 2021. Behavioral assessment of sensory,
motor, emotion, and cognition in rodent models of intracerebral hemorrhage. Frontiers
in Neurology 12: 667221. doi.org/10.3389/fneur.2021.667511
Sun,
M.F., Zhu, Y.L., Zhou, Z.L., Jia, X.B., Xu, Y.D., Yang, Q., Cui, C. & Shen,
Y.Q. 2018. Neuroprotective effects of fecal microbiota transplantation on
MPTP-induced Parkinson ’s disease mice: Gut microbiota, glial reaction and
TLR4/TNF-α signaling pathway. Brain, Behavior, and Immunity 70:
48-60. doi.org/10.1016/j.bbi.2018.02.005
Tatton,
N.A. & Kish, S.J. 1997. In situ detection of apoptotic nuclei in the
substantia nigra compacta of 1-methyl-4-phenyl-1, 2, 3,
6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase
labelling and acridine orange staining. Neuroscience 77(4): 1037-1048. doi.org/10.1016/S0306-4522(96)00545-3
Voikar,
V., Vasar, E. & Rauvala, H. 2004. Behavioral alterations induced by
repeated testing in C57BL/6J and 129S2/Sv mice: Implications for phenotyping
screens. Genes, Brain and Behavior 3(1): 27-38. doi.org/10.1046/j.1601-183X.2003.0044.x
Wile,
D.J., Agarwal, P.A., Schulzer, M., Mak, E., Dinelle, K., Shahinfard, E., Vafai,
N., Hasegawa, K., Zhang, J., McKenzie, J., Neilson, N., Strongosky, A., Uitti,
R.J., Guttman, M., Zabetian, C.P., Ding, Y.S., Adam, M., Aasly, J., Wszolek,
Z.K., Farrer, M., Sossi, V. & Stoessl, A.J. 2017. Serotonin and dopamine
transporter PET changes in the premotor phase of LRRK2 parkinsonism:
Cross-sectional studies. The Lancet Neurology 16(5): 351-359. doi.org/10.1016/S1474-4422(17)30056-X
Zeng,
X.S., Geng, W.S. & Jia, J.J. 2018. Neurotoxin-induced animal models of
Parkinson disease: Pathogenic mechanism and assessment. ASN Neuro 10:
1759091418777438. doi.org/10.1177/1759091418777438
Zhang,
Q.S., Heng, Y., Mou, Z., Huang, J.Y., Yuan, Y.H. & Chen, N.H. 2017.
Reassessment of subacute MPTP-treated mice as animal model of Parkinson's
disease. Acta Pharmacologica Sinica 38(10): 1317-1328. doi.org/10.1038/aps.2017.49
*Corresponding
author; email: chenorma@upm.edu.my
|